2025年01月31日
情報科学類 オペレーティングシステム II
筑波大学 システム情報系
新城 靖
<yas@cs.tsukuba.ac.jp>
このページは、次の URL にあります。
https://www.coins.tsukuba.ac.jp/~yas/coins/os2-2024/2025-01-31
あるいは、次のページから手繰っていくこともできます。
https://www.coins.tsukuba.ac.jp/~yas/
https://www.cs.tsukuba.ac.jp/~yas/
struct timeval {
time_t tv_sec; /* seconds. long int */
suseconds_t tv_usec; /* microseconds. long int */
};
int gettimeofday(struct timeval *tp, struct timezone *tzp);
int settimeofday(const struct timeval *tp, const struct timezone *tzp);
使い方
1: /*
2: gettimeofday-print.c -- get colander time and print
3: Created on: 2014/01/22 20:40:34
4: */
5:
6: #include <sys/time.h> /* gettimeofday() */
7: #include <time.h> /* ctime() */
8: #include <stdio.h>
9:
10: main()
11: {
12: struct timeval tv;
13: time_t sec;
14: gettimeofday( &tv, NULL );
15: sec = tv.tv_sec;
16: printf("%s", ctime(&sec) );
17: }
$ make gettimeofday-print
cc gettimeofday-print.c -o gettimeofday-print
$ ./gettimeofday-print
Mon Jan 27 11:50:00 2025
$ date
Mon Jan 27 11:50:01 JST 2025
$
POSIX 1003.1, 2003 の
struct timespec
では、ナノ秒単位。
struct timespec {
time_t tv_sec; /* Seconds. */
long int tv_nsec; /* Nanoseconds. */
};
int clock_settime(clockid_t clock_id, const struct timespec *tp);
int clock_gettime(clockid_t clock_id, struct timespec *tp);
int clock_getres(clockid_t clock_id, struct timespec *res);
clock_id としては、CLOCK_REALTIME (カレンダ時刻)やCLOCK_MONOTONIC があ
る。
カレンダ時刻は、変更できる。逆走させることも可能。
順方向のジャンプや逆走を避けて、カレンダ時刻を合わせるには、adjtime() を使う。
int adjtime(const struct timeval *delta, struct timeval *olddelta);adjtime() を使った時刻同期の方法。
struct itimerval {
struct timeval it_interval; /* next value */
struct timeval it_value; /* current value */
};
int setitimer(int which, const struct itimerval *value,
struct itimerval *ovalue);
int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
struct timeval *timeout);
int poll(struct pollfd *fds, nfds_t nfds, int timeout);
int epoll_wait(int epfd, struct epoll_event *events, int maxevents, int timeout);
int kevent(int kq, const struct kevent *changelist, int nchanges,
struct kevent *eventlist, int nevents, const struct timespec *timeout);
ネットワーク・プログラムでよく使う。複数の入力を監視する。指定された時
間、入力がなければ、システム・コールから復帰する。
参考: システムプログラム/select()による複数のクライアントに対するサービスの同時提供
なにもしない時間切れ。
unsigned int sleep(unsigned int seconds); int usleep(useconds_t usec); int nanosleep(const struct timespec *rqtp, struct timespec *rmtp);

図? タイマ関連のハードウェアの基本モデル
2つの機能がある。
その他の割込み
$ cat /sys/devices/system/clocksource/clocksource0/available_clocksource
tsc acpi_pm
$ cat /sys/devices/system/clocksource/clocksource0/current_clocksource
tsc
$
$ grep CONFIG_HZ .config
# CONFIG_HZ_PERIODIC is not set
# CONFIG_HZ_100 is not set
# CONFIG_HZ_250 is not set
# CONFIG_HZ_300 is not set
CONFIG_HZ_1000=y
CONFIG_HZ=1000
$
利用例
linux-6.12.7/include/asm-generic/param.h 8: # define HZ CONFIG_HZ /* Internal kernel timer frequency */ linux-6.12.7/include/linux/jiffies.h 85: extern u64 __cacheline_aligned_in_smp jiffies_64; 86: extern unsigned long volatile __cacheline_aligned_in_smp __jiffy_arch_data jiffies;
$ ls -l vmlinux
-rwxr-xr-x 1 yas prof 380365016 Dec 29 15:21 vmlinux
$ nm vmlinux|grep 'D jiffies'
ffffffff82a079c0 D jiffies
ffffffff82a079c0 D jiffies_64
ffffffff82a07a40 D jiffies_lock
ffffffff82a07a00 D jiffies_seq
$
linux-6.12.7/kernel/time/tick-common.c
86: static void tick_periodic(int cpu)
87: {
88: if (READ_ONCE(tick_do_timer_cpu) == cpu) {
...
95: do_timer(1);
98: update_wall_time();
99: }
100:
101: update_process_times(user_mode(get_irq_regs()));
...
103: }
linux-6.12.7/kernel/time/timer.c
61: __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
linux-6.12.7/kernel/time/timekeeping.c
2318: void do_timer(unsigned long ticks)
2319: {
2320: jiffies_64 += ticks;
...
2322: }
xtime_nsec >> shift でナノ秒を表す。
linux-6.12.7/include/linux/timekeeper_internal.h
89: struct timekeeper {
90: struct tk_read_base tkr_mono;
...
92: u64 xtime_sec;
...
124: };
34: struct tk_read_base {
35: struct clocksource *clock;
...
39: u32 shift;
40: u64 xtime_nsec;
...
43: };
linux-6.12.7/include/linux/time64.h
13: struct timespec64 {
14: time64_t tv_sec; /* seconds */
15: long tv_nsec; /* nanoseconds */
16: };
linux-6.12.7/kernel/time/timekeeping.c
129: static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
130: {
131: struct timespec64 ts;
132:
133: ts.tv_sec = tk->xtime_sec;
134: ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
135: return ts;
136: }
linux-6.12.7/kernel/time/time.c
140: SYSCALL_DEFINE2(gettimeofday, struct __kernel_old_timeval __user *, tv,
141: struct timezone __user *, tz)
142: {
143: if (likely(tv != NULL)) {
144: struct timespec64 ts;
145:
146: ktime_get_real_ts64(&ts);
147: if (put_user(ts.tv_sec, &tv->tv_sec) ||
148: put_user(ts.tv_nsec / 1000, &tv->tv_usec))
149: return -EFAULT;
150: }
151: if (unlikely(tz != NULL)) {
152: if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
153: return -EFAULT;
154: }
155: return 0;
156: }
linux-6.12.7/kernel/time/timekeeping.c
719: void ktime_get_real_ts64(struct timespec64 *ts)
720: {
721: struct timekeeper *tk = &tk_core.timekeeper;
722: unsigned int seq;
723: u64 nsecs;
...
730: ts->tv_sec = tk->xtime_sec;
731: nsecs = timekeeping_get_ns(&tk->tkr_mono);
...
735: ts->tv_nsec = 0;
736: timespec64_add_ns(ts, nsecs);
737: }
linux-6.12.7/include/linux/timer_types.h
8: struct timer_list {
...
14: unsigned long expires;
15: void (*function)(struct timer_list *);
...
21: };
jiffies が増加して expires に達すれば、(*function)(tl) を呼ぶ。 引数 tl は、struct timer_list *。
主に次の関数で操作する。
(*function)() で独自のデータ(以下の例では struct s1 *)を得るには、次の ように from_timer() マクロか container_of() マクロを用いる。
struct s1 {
...
struct timer_list s_timer;
...
int s_x;
...
};
void timer_list_handler(struct timer_list *tl) {
struct s1 *p1 = from_timer(p1, tl, s_timer);
f( p1->s_x );
}

図? timer_list から外側の構造体を求める
linux-6.12.7/include/linux/timer.h
132: #define from_timer(var, callback_timer, timer_fieldname) \
133: container_of(callback_timer, typeof(*var), timer_fieldname)
linux-6.12.7/include/linux/container_of.h
18: #define container_of(ptr, type, member) ({ \
19: void *__mptr = (void *)(ptr); \
...
23: ((type *)(__mptr - offsetof(type, member))); })
linux-6.12.7/include/linux/stddef.h
16: #define offsetof(TYPE, MEMBER) __builtin_offsetof(TYPE, MEMBER)
linux-6.12.7/tools/include/linux/kernel.h
25: #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
linux-6.12.7/kernel/time/timer.c
2534: struct process_timer {
2535: struct timer_list timer;
2536: struct task_struct *task;
2537: };
2577: signed long __sched schedule_timeout(signed long timeout)
2578: {
2579: struct process_timer timer;
2580: unsigned long expire;
2581:
...
2611: expire = timeout + jiffies;
2612:
2613: timer.task = current;
2614: timer_setup_on_stack(&timer.timer, process_timeout, 0);
2615: __mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING);
2616: schedule();
2617: del_timer_sync(&timer.timer);
2618:
2619: /* Remove the timer from the object tracker */
2620: destroy_timer_on_stack(&timer.timer);
2621:
2622: timeout = expire - jiffies;
2623:
2624: out:
2625: return timeout < 0 ? 0 : timeout;
2626: }
2539: static void process_timeout(struct timer_list *t)
2540: {
2541: struct process_timer *timeout = from_timer(timeout, t, timer);
2542:
2543: wake_up_process(timeout->task);
2544: }
linux-6.12.7/include/linux/hrtimer.h
35: enum hrtimer_mode {
36: HRTIMER_MODE_ABS = 0x00,
37: HRTIMER_MODE_REL = 0x01,
...
56: };
linux-6.12.7/include/linux/hrtimer_types.h
13: enum hrtimer_restart {
14: HRTIMER_NORESTART, /* Timer is not restarted */
15: HRTIMER_RESTART, /* Timer must be restarted */
16: };
39: struct hrtimer {
...
42: enum hrtimer_restart (*function)(struct hrtimer *);
...
48: };
主に次の関数で操作する。
struct hrtimer my_timer;
hrtimer_init(&my_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
my_timer.function = my_timer_handler;
...
hrtimer_start(&my_timer, ktime_set(0, t_nano), HRTIMER_MODE_REL);
...
enum hrtimer_restart my_timer_handler(struct hrtimer *timer)
{
...
return HRTIMER_NORESTART;
}
例: Ethernet のドライバでモードを変更して 2 マイクロ秒だけ待つ。
様々な方法がある。
例1: 10 tick (インターバル・タイマによる割り込み)を待つ。
unsigned long timeout = jiffies + 10; // 10 ticks
while (time_before(jiffies,timeout))
continue;
例2: 2秒待つ
unsigned long delay = jiffies + 2*HZ; // 2秒
while (time_before(jiffies,delay))
continue;
unsigned long timeout = jiffies + 10; // 10 ticks
while (jiffies<timeout)
continue;
引き算して 0 と比較すると、オーバフローの問題が解決できる。
unsigned long timeout = jiffies + 10; // 10 ticks
while (jiffies-timeout<0)
continue;
次のマクロを使う方法もある。
linux-6.12.7/include/linux/jiffies.h 127: #define time_after(a,b) \ 128: (typecheck(unsigned long, a) && \ 129: typecheck(unsigned long, b) && \ 130: ((long)((b) - (a)) < 0)) ... 138: #define time_before(a,b) time_after(b,a) ... 147: #define time_after_eq(a,b) \ 148: (typecheck(unsigned long, a) && \ 149: typecheck(unsigned long, b) && \ 150: ((long)((a) - (b)) >= 0)) ... 158: #define time_before_eq(a,b) time_after_eq(b,a)
unsigned long delay = jiffies + 2*HZ; // 2秒
while (time_before(jiffies,delay))
cond_resched();
他に実行すべき重要なプロセスが存在する(条件)時には、スケジューラを呼ん
で、実行する。存在しなければ、空ループと同じ。ただし、スケジューラを呼
ぶ(sleepする可能性がある)ので、割り込みコンテキストからは使えない。
void ndelay(unsigned long nsecs) void udelay(unsigned long usecs) void mdelay(unsigned long msecs)udelay() は、ある回数のループで実装されている。回数は、CPUの速度等で決 まる。ndelay(), mdelay() は、udelay() を呼んでいる。
udelay() で1ミリ秒以上待ってはいけない。 ループのインデックスがオーバフローする可能性がある。
set_current_state( TASK_INTERRUPTIBLE ); // signal で起きる可能性がある schedule_timeout( s * HZ );実装には struct timer_list が使われている。
| 表示 | 説明 |
| NI | Nice。優先度を表す値。 |
$ /bin/ps l
F UID PID PPID PRI NI VSZ RSS WCHAN STAT TTY TIME COMMAND
0 1013 20638 20636 20 0 123572 2100 wait Ss pts/2 0:00 -bash
0 1013 21139 20638 20 0 155660 5900 poll_s S pts/2 0:02 xterm -class UXTerm -title uxterm -u8
0 1013 21150 21139 20 0 123552 2144 wait Ss pts/3 0:00 bash
0 1013 21560 20638 20 0 267808 22928 poll_s S+ pts/2 0:09 emacs -nw
0 1013 21784 21150 20 0 103748 956 signal T pts/3 0:00 lv kernel/time/timer.c
0 1013 27031 21150 20 0 108132 980 - R+ pts/3 0:00 /bin/ps l
$ /bin/nice /bin/ps l
F UID PID PPID PRI NI VSZ RSS WCHAN STAT TTY TIME COMMAND
0 1013 20638 20636 20 0 123572 2100 wait Ss pts/2 0:00 -bash
0 1013 21139 20638 20 0 155660 5900 poll_s S pts/2 0:02 xterm -class UXTerm -title uxterm -u8
0 1013 21150 21139 20 0 123552 2144 wait Ss pts/3 0:00 bash
0 1013 21560 20638 20 0 267808 22928 poll_s S+ pts/2 0:09 emacs -nw
0 1013 21784 21150 20 0 103748 956 signal T pts/3 0:00 lv kernel/time/timer.c
0 1013 27034 21150 30 10 108136 984 - RN+ pts/3 0:00 /bin/ps l
$ /bin/nice -19 /bin/ps l
F UID PID PPID PRI NI VSZ RSS WCHAN STAT TTY TIME COMMAND
0 1013 20638 20636 20 0 123572 2100 wait Ss pts/2 0:00 -bash
0 1013 21139 20638 20 0 155660 5900 - R pts/2 0:02 xterm -class UXTerm -title uxterm -u8
0 1013 21150 21139 20 0 123552 2144 wait Ss pts/3 0:00 bash
0 1013 21560 20638 20 0 267808 22928 poll_s S+ pts/2 0:09 emacs -nw
0 1013 21784 21150 20 0 103748 956 signal T pts/3 0:00 lv kernel/time/timer.c
0 1013 27035 21150 39 19 108132 984 - RN+ pts/3 0:00 /bin/ps l
$
1: /*
2: getpriority-pid.c -- 優先度の表示
3: ~yas/syspro/proc/getpriority-pid.c
4: Created on: 2009/12/14 12:15:11
5: */
6:
7: #include <stdio.h> /* stderr, fprintf() */
8: #include <sys/time.h> /* getpriority() */
9: #include <sys/resource.h> /* getpriority() */
10: #include <stdlib.h> /* strtol() */
11: #include <limits.h> /* strtol() */
12:
13: main( int argc, char *argv[] )
14: {
15: int which, who, prio;
16: pid_t pid;
17: if( argc != 2 )
18: {
19: fprintf(stderr,"Usage: %% %s pid\n",argv[0] );
20: exit( 1 );
21: }
22: pid = strtol( argv[1], NULL, 10 );
23: prio = getpriority( PRIO_PROCESS, pid );
24: printf("pid==%d, priority==%d\n", pid, prio);
25: }
$ ./getpriority-pid
Usage: % ./getpriority-pid pid
$ echo $$
21150
$ ./getpriority-pid
Usage: % ./getpriority-pid pid
$ ./getpriority-pid $$
pid==21150, priority==0
$ ./getpriority-pid 0
pid==0, priority==0
$ /bin/nice -10 ./getpriority-pid 0
pid==0, priority==10
$ /bin/nice -20 ./getpriority-pid 0
pid==0, priority==19
$
linux-6.12.7/include/linux/sched.h
785: struct task_struct {
...
793: unsigned int __state;
...
833: int prio;
834: int static_prio;
835: int normal_prio;
836: unsigned int rt_priority;
837:
838: struct sched_entity se;
839: struct sched_rt_entity rt;
840: struct sched_dl_entity dl;
...
845: const struct sched_class *sched_class;
...
882: unsigned int policy;
...
1617: };
541: struct sched_entity {
542: /* For load-balancing: */
543: struct load_weight load;
544: struct rb_node run_node;
545: u64 deadline;
...
550: unsigned char on_rq;
...
556: u64 exec_start;
557: u64 sum_exec_runtime;
558: u64 prev_sum_exec_runtime;
559: u64 vruntime;
560: s64 vlag;
...
585: };
426: struct load_weight {
427: unsigned long weight;
428: u32 inv_weight;
429: };
struct task_struct の中に、prio 等のフィールドやstruct sched_entity が
ある。
struct sched_entity で重要なフィールド。詳しくは後述。
linux-6.12.7/include/uapi/linux/sched.h 114: #define SCHED_NORMAL 0 115: #define SCHED_FIFO 1 116: #define SCHED_RR 2 117: #define SCHED_BATCH 3 118: /* SCHED_ISO: reserved but not implemented yet */ 119: #define SCHED_IDLE 5 120: #define SCHED_DEADLINE 6 121: #define SCHED_EXT 7
linux-6.12.7/kernel/sys.c
297: SYSCALL_DEFINE2(getpriority, int, which, int, who)
298: {
299: struct task_struct *g, *p;
300: struct user_struct *user;
301: const struct cred *cred = current_cred();
302: long niceval, retval = -ESRCH;
303: struct pid *pgrp;
304: kuid_t uid;
...
310: switch (which) {
311: case PRIO_PROCESS:
312: if (who)
313: p = find_task_by_vpid(who);
314: else
315: p = current;
316: if (p) {
317: niceval = nice_to_rlimit(task_nice(p));
318: if (niceval > retval)
319: retval = niceval;
320: }
321: break;
322: case PRIO_PGRP:
...
335: case PRIO_USER:
...
355: }
...
359: return retval;
360: }
linux-6.12.7/include/linux/sched/prio.h
5: #define MAX_NICE 19
6: #define MIN_NICE -20
7: #define NICE_WIDTH (MAX_NICE - MIN_NICE + 1)
...
16: #define MAX_RT_PRIO 100
...
19: #define MAX_PRIO (MAX_RT_PRIO + NICE_WIDTH)
...
27: #define NICE_TO_PRIO(nice) ((nice) + DEFAULT_PRIO)
28: #define PRIO_TO_NICE(prio) ((prio) - DEFAULT_PRIO)
...
33: static inline long nice_to_rlimit(long nice)
34: {
35: return (MAX_NICE - nice + 1);
36: }
linux-6.12.7/include/linux/sched.h
1858: static inline int task_nice(const struct task_struct *p)
1859: {
1860: return PRIO_TO_NICE((p)->static_prio);
1861: }
glibc-2.35/sysdeps/unix/sysv/linux/getpriority.c
27: #define PZERO 20
...
34: int
35: __getpriority (enum __priority_which which, id_t who)
36: {
37: int res;
38:
39: res = INLINE_SYSCALL (getpriority, 2, (int) which, who);
40: if (res >= 0)
41: res = PZERO - res;
42: return res;
43: }
44: libc_hidden_def (__getpriority)
45: weak_alias (__getpriority, getpriority)
linux-6.12.7/kernel/sched/core.c
9998: /*
9999: * Nice levels are multiplicative, with a gentle 10% change for every
10000: * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10001: * nice 1, it will get ~10% less CPU time than another CPU-bound task
10002: * that remained on nice 0.
10003: *
10004: * The "10% effect" is relative and cumulative: from _any_ nice level,
10005: * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10006: * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10007: * If a task goes up by ~10% and another task goes down by ~10% then
10008: * the relative distance between them is ~25%.)
10009: */
10010: const int sched_prio_to_weight[40] = {
10011: /* -20 */ 88761, 71755, 56483, 46273, 36291,
10012: /* -15 */ 29154, 23254, 18705, 14949, 11916,
10013: /* -10 */ 9548, 7620, 6100, 4904, 3906,
10014: /* -5 */ 3121, 2501, 1991, 1586, 1277,
10015: /* 0 */ 1024, 820, 655, 526, 423,
10016: /* 5 */ 335, 272, 215, 172, 137,
10017: /* 10 */ 110, 87, 70, 56, 45,
10018: /* 15 */ 36, 29, 23, 18, 15,
10019: };
1368: void set_load_weight(struct task_struct *p, bool update_load)
1369: {
1370: int prio = p->static_prio - MAX_RT_PRIO;
1371: struct load_weight lw;
...
1377: lw.weight = scale_load(sched_prio_to_weight[prio]);
1378: lw.inv_weight = sched_prio_to_wmult[prio];
...
1388: p->se.load = lw;
1389: }
linux-6.12.7/include/linux/sched.h
419: # define SCHED_FIXEDPOINT_SHIFT 10
420: # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
linux-6.12.7/kernel/sched/sched.h
151: #ifdef CONFIG_64BIT
152: # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
153: # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
...
162: #else
163: # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
164: # define scale_load(w) (w)
...
166: #endif
| 名前 | 説明 |
|---|---|
| enqueue_task | プロセスが実行可能(runnable)になった |
| dequeue_task | プロセスが実行可能ではなくなった |
| yield_task | CPUを譲る。dequeueしてenqueue |
| check_preempt_curr | 実行可能になった時にCPUを横取りすべきかをチェック |
| pick_next_task | 次に実行すべきプロセスを選ぶ |
| set_curr_task | スケジューリング・クラスが変更された |
| task_tick | タイマ割込み(tick)の時に呼ばれる |
| task_new | 新しいプロセスが生成された |
linux-6.12.7/kernel/sched/sched.h
2387: struct sched_class {
...
2393: void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2394: bool (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
...
2411: struct task_struct *(*pick_next_task)(struct rq *rq, struct task_struct *prev);
...
2431: void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
...
2460: };
linux-6.12.7/kernel/sched/core.c
2015: void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2016: {
...
2020: p->sched_class->enqueue_task(rq, p, flags);
...
2034: }
2039: inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2040: {
...
2057: return p->sched_class->dequeue_task(rq, p, flags);
2058: }
linux-6.12.7/kernel/sched/syscalls.c
526: int __sched_setscheduler(struct task_struct *p,
527: const struct sched_attr *attr,
528: bool user, bool pi)
529: {
...
710: next_class = __setscheduler_class(policy, newprio);
...
723: __setscheduler_params(p, attr);
724: p->sched_class = next_class;
725: p->prio = newprio;
...
766: return retval;
767: }
293: static void __setscheduler_params(struct task_struct *p,
294: const struct sched_attr *attr)
295: {
296: int policy = attr->sched_policy;
297:
298: if (policy == SETPARAM_POLICY)
299: policy = p->policy;
300:
301: p->policy = policy;
302:
303: if (dl_policy(policy)) {
...
305: } else if (fair_policy(policy)) {
306: p->static_prio = NICE_TO_PRIO(attr->sched_nice);
...
316: }
...
332: p->normal_prio = normal_prio(p);
333: set_load_weight(p, true);
334: }
linux-6.12.7/kernel/sched/core.c
7032: const struct sched_class *__setscheduler_class(int policy, int prio)
7033: {
7034: if (dl_prio(prio))
7035: return &dl_sched_class;
7036:
7037: if (rt_prio(prio))
7038: return &rt_sched_class;
7039:
7040: #ifdef CONFIG_SCHED_CLASS_EXT
7041: if (task_should_scx(policy))
7042: return &ext_sched_class;
7043: #endif
7044:
7045: return &fair_sched_class;
7046: }
p->prio の値に応じて
&dl_sched_class か
&rt_sched_class か
&ext_sched_class か
&fair_sched_class のいずれかを指すようにする。
CPUバウンドのプロセスが複数存在した時、ある期間を定めて、この期間の間に、 (優先度を考慮して)公平になるようにCPU資源を割り当てる。この期間の間に、 1度はCPUを割り当てられるようにがんばる。この期間は、 kernel.sched_latency_ns で設定されている。以下の例では、15ミリ秒。
$ sysctl kernel.sched_latency_ns
kernel.sched_latency_ns = 15000000
$
たとえば、もし優先度が同じプロセスAとプロセスBが存在した時には、15ミリ
秒の間にプロセスAに7.5ミリ秒、プロセスBに7.5ミリ秒のCPU資源を割り当てる
ようにがんばる。
Linux CFS は、次の方法でスケジューリングを行なう。
EEVDF スケジューラの目標は CFS と同じ。使用可能なCPU時間をシステム内の すべての実行可能なタスク間で均等に分割すること。 EDF (Earliest Deadline First) は、実時間のスケジューリング方式だが、 EEVDF は、名前は似ているが、fair を目指している。
例:
| プロセス | A | B | C |
| Lag値 | 0 ms | 0 ms | 0 ms |
| プロセス | A | B | C |
| Lag値 | -20 ms | 10 ms | 10 ms |
| プロセス | A | B | C |
| Lag値 | -10 ms | -10 ms | 20 ms |
| プロセス | A | B | C |
| Lag値 | 0 ms | 0 ms | 0 ms |
https://docs.kernel.org/scheduler/sched-eevdf.html,The Linux Kernel/EEVDF Scheduler
https://lwn.net/Articles/969062/,LWN.net/Completing the EEVDF scheduler

図? runqueueの構造
linux-6.12.7/kernel/sched/core.c
120: DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
linux-6.12.7/kernel/sched/sched.h
1105: struct rq {
...
1137: struct cfs_rq cfs;
1138: struct rt_rq rt;
1139: struct dl_rq dl;
1140: #ifdef CONFIG_SCHED_CLASS_EXT
1141: struct scx_rq scx;
1142: #endif
...
1311: };
651: struct cfs_rq {
...
668: struct rb_root_cached tasks_timeline;
...
674: struct sched_entity *curr;
...
748: };

図? runqueueの構造(red-black tree)
linux-6.12.7/kernel/sched/sched.h
2508: #define DEFINE_SCHED_CLASS(name) \
2509: const struct sched_class name##_sched_class \
2510: __aligned(__alignof__(struct sched_class)) \
2511: __section("__" #name "_sched_class")
linux-6.12.7/kernel/sched/fair.c
13617: DEFINE_SCHED_CLASS(fair) = {
13618:
13619: .enqueue_task = enqueue_task_fair,
13620: .dequeue_task = dequeue_task_fair,
...
13626: .pick_task = pick_task_fair,
...
13643: .task_tick = task_tick_fair,
...
13666: };
linux-6.12.7/kernel/sched/fair.c
6990: static void
6991: enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6992: {
...
7043: enqueue_entity(cfs_rq, se, flags);
...
7113: }
5391: enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5392: {
...
5438: __enqueue_entity(cfs_rq, se);
...
5456: }
852: static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
853: {
...
857: rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
858: __entity_less, &min_vruntime_cb);
859: }
861: static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
862: {
863: rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
864: &min_vruntime_cb);
...
866: }
800: static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
801: {
802: return entity_before(__node_2_se(a), __node_2_se(b));
803: }
544: static inline bool entity_before(const struct sched_entity *a,
545: const struct sched_entity *b)
546: {
...
551: return (s64)(a->deadline - b->deadline) < 0;
552: }
linux-6.12.7/include/linux/rbtree_augmented.h
63: static __always_inline struct rb_node *
64: rb_add_augmented_cached(struct rb_node *node, struct rb_root_cached *tree,
65: bool (*less)(struct rb_node *, const struct rb_node *),
66: const struct rb_augment_callbacks *augment)
67: {
68: struct rb_node **link = &tree->rb_root.rb_node;
69: struct rb_node *parent = NULL;
70: bool leftmost = true;
71:
72: while (*link) {
73: parent = *link;
74: if (less(node, parent)) {
75: link = &parent->rb_left;
76: } else {
77: link = &parent->rb_right;
78: leftmost = false;
79: }
80: }
81:
82: rb_link_node(node, parent, link);
83: augment->propagate(parent, NULL); /* suboptimal */
84: rb_insert_augmented_cached(node, tree, leftmost, augment);
85:
86: return leftmost ? node : NULL;
87: }
linux-6.12.7/include/linux/rbtree.h
59: static inline void rb_link_node(struct rb_node *node, struct rb_node *parent,
60: struct rb_node **rb_link)
61: {
...
63: node->rb_left = node->rb_right = NULL;
64:
65: *rb_link = node;
66: }
&parent->rb_left), 大きければ右(&parent->rb_right) に進む。
linux-6.12.7/kernel/sched/core.c
5585: void sched_tick(void)
5586: {
5587: int cpu = smp_processor_id();
5588: struct rq *rq = cpu_rq(cpu);
5589: struct task_struct *curr;
...
5601: curr = rq->curr;
...
5607: curr->sched_class->task_tick(rq, curr, 0);
...
5631: }
linux-6.12.7/kernel/sched/sched.h
13096: static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
13097: {
13098: struct cfs_rq *cfs_rq;
13099: struct sched_entity *se = &curr->se;
13100:
13101: for_each_sched_entity(se) {
13102: cfs_rq = cfs_rq_of(se);
13103: entity_tick(cfs_rq, se, queued);
13104: }
...
13113: }
5691: static void
5692: entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5693: {
...
5697: update_curr(cfs_rq);
...
5721: }
1214: static void update_curr(struct cfs_rq *cfs_rq)
1215: {
1216: struct sched_entity *curr = cfs_rq->curr;
1217: struct rq *rq = rq_of(cfs_rq);
1218: s64 delta_exec;
1219: bool resched;
...
1224: delta_exec = update_curr_se(rq, curr);
...
1228: curr->vruntime += calc_delta_fair(delta_exec, curr);
1229: resched = update_deadline(cfs_rq, curr);
1230: update_min_vruntime(cfs_rq);
...
1253: if (cfs_rq->nr_running == 1)
1254: return;
1255:
1256: if (resched || did_preempt_short(cfs_rq, curr)) {
1257: resched_curr(rq);
1258: clear_buddies(cfs_rq, curr);
1259: }
1260: }
1134: static s64 update_curr_se(struct rq *rq, struct sched_entity *curr)
1135: {
1136: u64 now = rq_clock_task(rq);
1137: s64 delta_exec;
1138:
1139: delta_exec = now - curr->exec_start;
...
1143: curr->exec_start = now;
1144: curr->sum_exec_runtime += delta_exec;
...
1154: return delta_exec;
1155: }
289: static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
290: {
291: if (unlikely(se->load.weight != NICE_0_LOAD))
292: delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
293:
294: return delta;
295: }
1007: static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
1008: {
1009: if ((s64)(se->vruntime - se->deadline) < 0)
1010: return false;
...
1023: se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
...
1028: return true;
1029: }
linux-6.6.9/kernel/sched/fair.c
12480: static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
12481: {
12482: struct cfs_rq *cfs_rq;
12483: struct sched_entity *se = &curr->se;
12484:
12485: for_each_sched_entity(se) {
12486: cfs_rq = cfs_rq_of(se);
12487: entity_tick(cfs_rq, se, queued);
12488: }
...
12497: }
5395: static void
5396: entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5397: {
...
5401: update_curr(cfs_rq);
...
5425: }
1150: static void update_curr(struct cfs_rq *cfs_rq)
1151: {
1152: struct sched_entity *curr = cfs_rq->curr;
1153: u64 now = rq_clock_task(rq_of(cfs_rq));
1154: u64 delta_exec;
...
1159: delta_exec = now - curr->exec_start;
...
1163: curr->exec_start = now;
...
1173: curr->sum_exec_runtime += delta_exec;
...
1176: curr->vruntime += calc_delta_fair(delta_exec, curr);
...
1189: }
311: static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
312: {
313: if (unlikely(se->load.weight != NICE_0_LOAD))
314: delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
315:
316: return delta;
317: }
$ cat /proc/sched_debug
Sched Debug Version: v0.11, 4.18.0-477.15.1.el8_8.x86_64 #1
...
jiffies : 8037018588
...
sysctl_sched
.sysctl_sched_latency : 18.000000
.sysctl_sched_min_granularity : 10.000000
...
cpu#0, 3092.734 MHz
.nr_running : 0
...
.curr->pid : 0
...
cfs_rq[0]:/system.slice/shibd.service
...
.se->exec_start : 3740976147.098853
.se->vruntime : 16904453.116095
.se->sum_exec_runtime : 488423.358201
cfs_rq[0]:/system.slice/mariadb.service
...
.se->exec_start : 3740976147.098853
.se->vruntime : 16904453.116095
.se->sum_exec_runtime : 488423.358201
...
cfs_rq[0]:/system.slice/httpd.service
...
.se->exec_start : 3740976409.981736
.se->vruntime : 16904452.748796
.se->sum_exec_runtime : 467578.885170
...
runnable tasks:
S task PID tree-key switches prio wait-time sum-exec sum-sleep
-------------------------------------------------------------------------------------------------------------
...
S shibd 2029016 36399.620037 1312918 120 0.000000 17147.974128 0.000000 0 0 /system.slice/shibd.service
...
S mysqld 3062817 223694.881335 2877 120 0.000000 377.018340 0.000000 0 0 /system.slice/mariadb.service
...
S httpd 1887526 304759.136719 29475 120 0.000000 4818.694375 0.000000 0 0 /system.slice/httpd.service
...
>R cat 3065061 23683938.282852 1 120 0.000000 2.674255 0.000000 0 0 /
...
cpu#1, 3092.734 MHz
..
cpu#2, 3092.734 MHz
...
cpu#3, 3092.734 MHz
...
$ cat /proc/self/sched
cat (3065430, #threads: 1)
-------------------------------------------------------------------
se.exec_start : 3736477629.503557
se.vruntime : 24389027.685650
se.sum_exec_runtime : 0.463870
...
se.load.weight : 1048576
...
policy : 0
prio : 120
...
$
void h(int a,int b, int c) {
....
}
これを実現するために、どのようなコードを書けばよいか。以下の空欄を埋め
なさい。
struct timer_list my_timer;
int my_arg_a,my_arg_b,my_arg_c;
void f(unsigned long data) {
timer_setup( /*空欄(a)*/, /*空欄(b)*/, 0);
my_timer.expires = /*空欄(c)*/;
/*空欄(d)*/;
}
void my_timer_func(/*省略*/) {
h( my_arg_a,my_arg_b,my_arg_c );
}
またポリシーがSCHED_NORMAL の時、 sched_class->task_tick() として呼ばれる関数を答えなさい。

図? 4つの要素を持つリスト構造
注意: 正しい二分探索木は、複数存在する。